Modeling Neurodegenerative Disease Risk and Progression

Holger Fröhlich 04.04.2019

Diseases have a time dimension!

We need to understand and model time series data to address important questions in Precision Medicine

- Earlier disease diagnosis / prevention
- Disease progression / prognosis

Case Studies

Early diagnosis: time-to-event models

Alzheimer's Disease risk model

Progression: multivariate time series clustering

Alzheimer's Disease progression

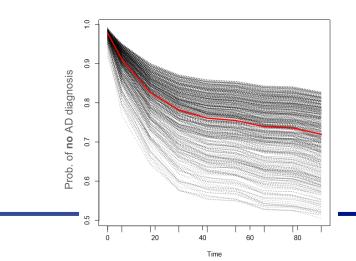
Simulation of multivariate patient trajectories

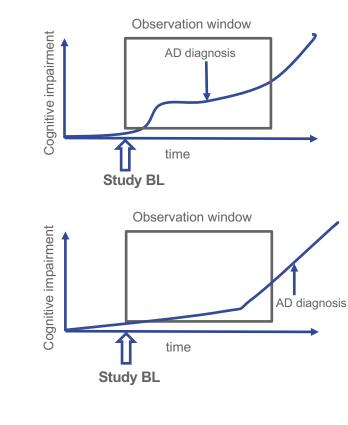
• Talk tomorrow

Early Disease Diagnosis

We don't know, how long patients have been in a pre-symptomatic phase, before entering the study

- Actual AD diagnosis can fall outside the observation window: right censored data
- Use well-established theory from survival analysis





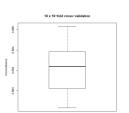
$$h(t|x) = h_0(t)\exp(-f(x))$$

Using Multi-Scale Data for Predicting Alzheimer's Disease and Reconstruction of Biological Mechanisms

Multi-scale baseline data (~900 normal / MCI patients):

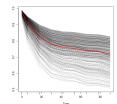
- Clinical features, incl.
 neuropsychological assessment scores
- Genetic variants (SNPs)
- Neuro-images (MRT)

Prediction performance: ~86% C-index



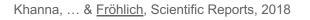
Multi-modal gradient boosted Cox regression

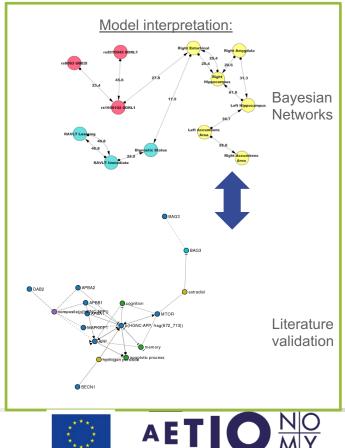
Disease risk



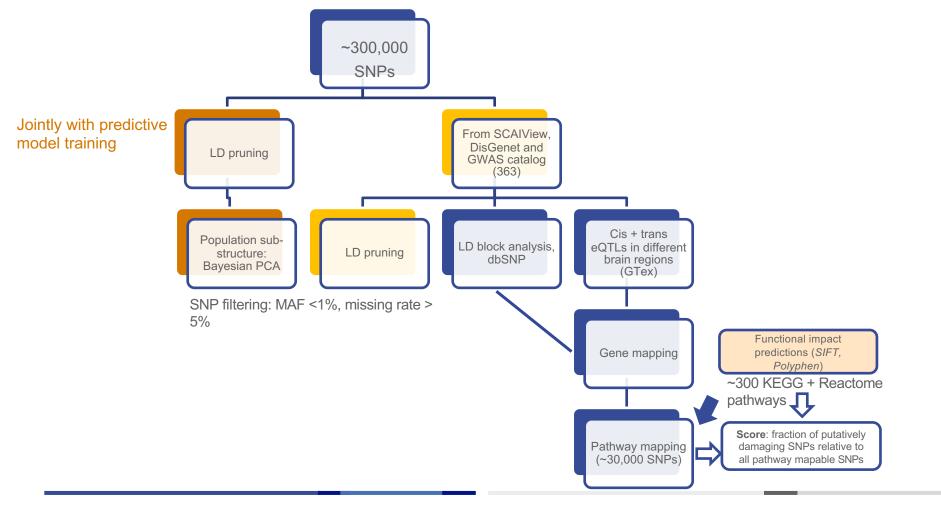
Goals:

- Predicting disease risk to allow for early therapeutic intervention
- At least partial understanding of transition mechanisms

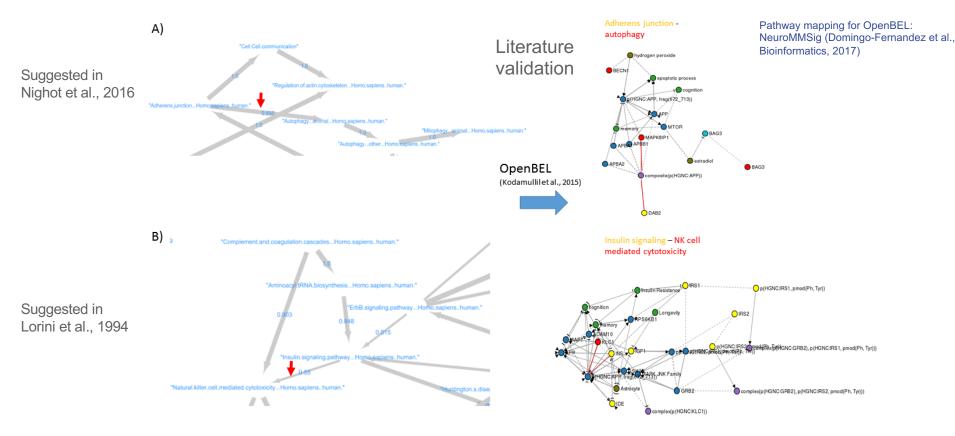




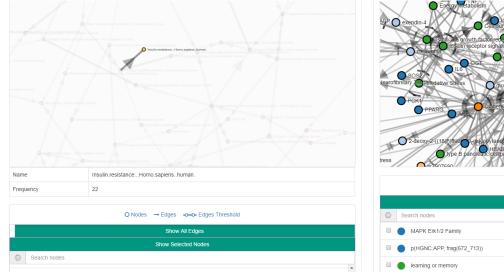
5



Model interpretation via Bayesian Networks



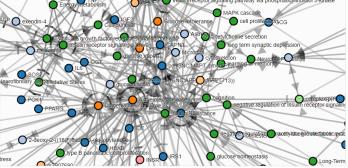
An Interactive Web Viewer for Bayesian Networks and Literature Derived Mechanisms



Apoptosis

Region WholeBrain23.0

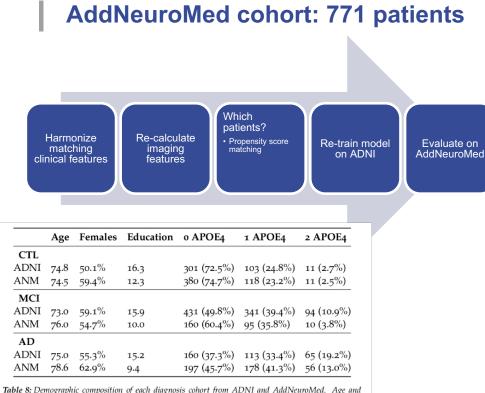
Insulin.resistance...Homo.sapiens..human. Rheumatoid.arthritis...Homo.sapiens..human



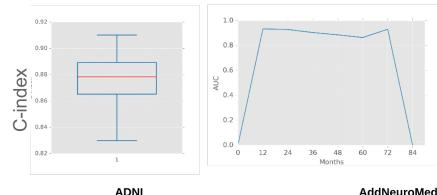
Show Selected Nodes
Search nodes
MAPK Erk1/2 Family
p(HGNC:APP, frag(672_713))
learning or memory
energy homeostasis
EN01
MAPK JNK Family
complex(p(HGNC:IGF1), p(HGNC:INSR))

http://neurommsig.scai.fraunhofer.de/bayesian

Independent Validation of the AD Risk Model

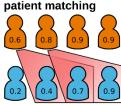


able 8: Demographic composition of each diagnosis cohort from ADNI and AddNeuroMed. Age and education averages are reported in years. o, 1, 2 APOE4: Number of individuals with 0, 1, 2 APOE4 alleles. Percentages give the fraction of the respective data set with the corresponding value. Females: Fraction of female individuals. ANM: AddNeuroMed



ADNI 0.9 0.8 0.6 Scoring

Caliper based patient matching



Used in Validation

0.7 (0.9

0.4

0.2

Discarded

Case Studies

Early diagnosis: time-to-event models

Alzheimer's Disease risk model

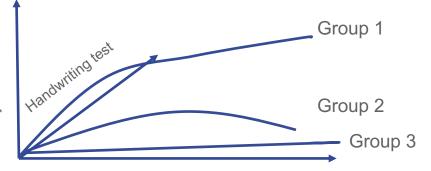
Progression: multivariate time series clustering

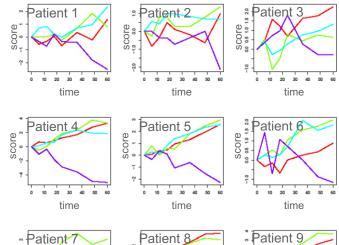
Alzheimer's Disease progression

Simulation of multivariate patient trajectories

Talk tomorrow

How to find multivariate disease progression clusters?





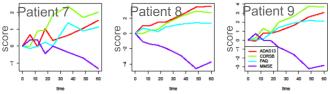
Disease progression in many diseases is highly heterogenous

Examples: Parkinson's, Alzheimer's

time

Multiple scores can be used to describe different aspects of disease severity

No existing standard technique



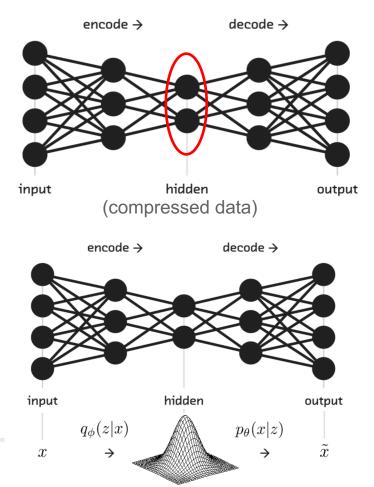
Background: Variational Autoencoders

Idea: Compress data into a lower dimensional representation

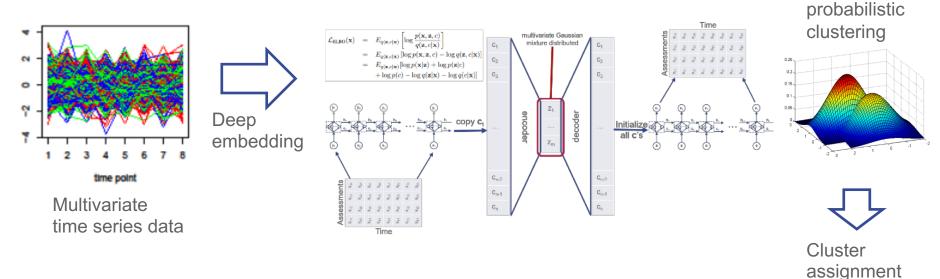
• Objective minimize reconstruction error

Variational autoencoder: make this representation smooth

• Map each input data point to a Gaussian



Method: Latent Gaussian Mixtures of Recurrent Variational Autoencoders



Challenge: patient drop-out → missing data not at random

Appropriate missing data model is needed

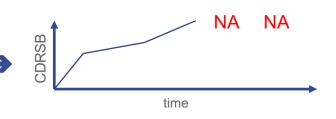
Latent

Dealing with Missing Data

Imputation would assume no correlation between missingness and measured features → wrong approach

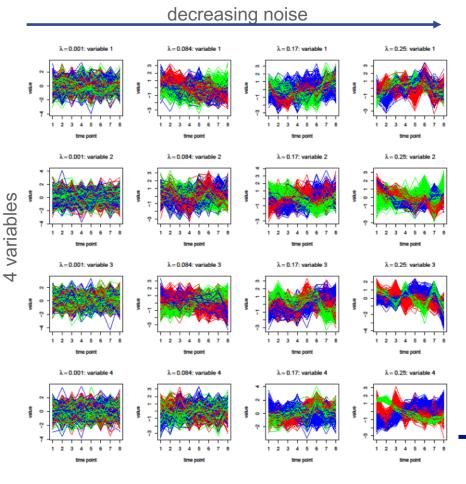
Our approach:

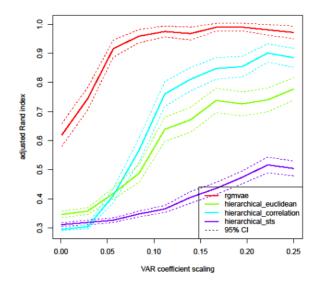
- Indicator variables encode missingness pattern → augment input to neural network → "implicit" imputation
- Consider only observed data in reconstruction term in ELBO criterion (element-wise multiplication with indicator variable)



Recurrent Deep Clustering

Technical Validation (Simulated Data)

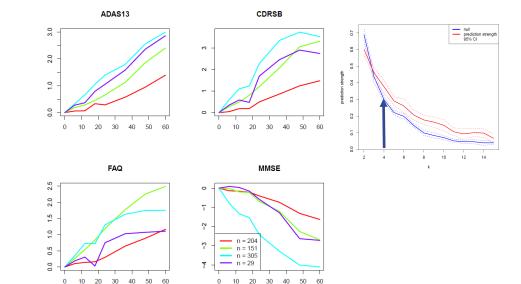




Proposed method outperforms naive approaches

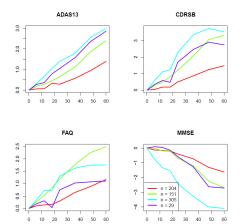
Clustering Results for Alzheimer's Disease

Method yields clearly separated progression clusters for Alzheimer's

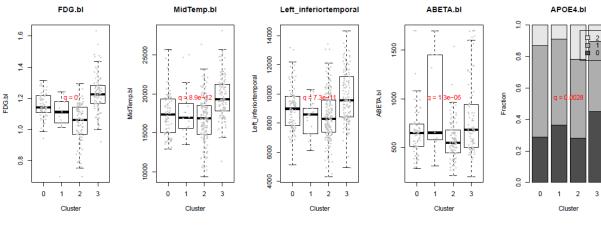


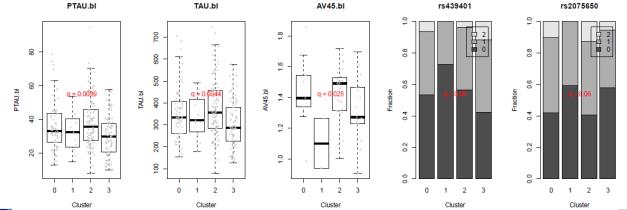
Tibshirani, R. and Walther, G., 2005. Cluster validation by prediction strength. *Journal of Computational and Graphical Statistics*, 14(3), pp.511-528

Interpretation of Clusters: Alzheimer's Disease



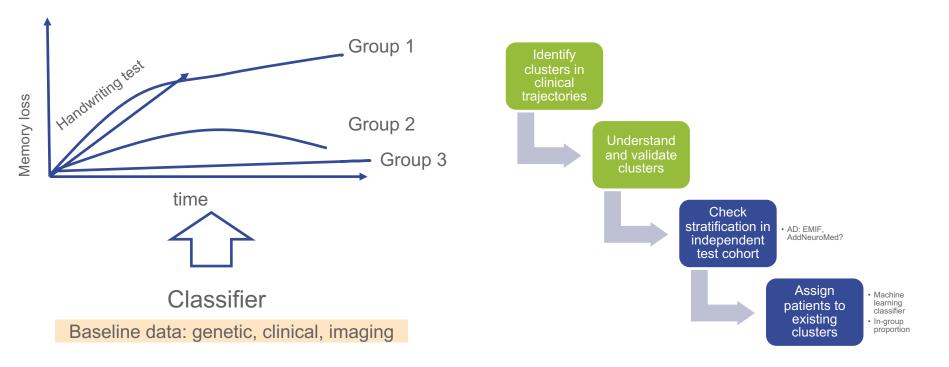
FDG.bl	Glucose uptake marker
MidTemp.bl	Brain region
Left_inferiortemporal	Brain region
ABETA.bl	CSF ABETA levels
APOE4.bl	CSF APOE4 levels
PTAU.bl	CSF PTAU levels
TAU.bl	CSF TAU levels
AV45.bl	ABETA deposits marker
rs439401	APOE4 SNP
rs2075650	TOMM40 SNP





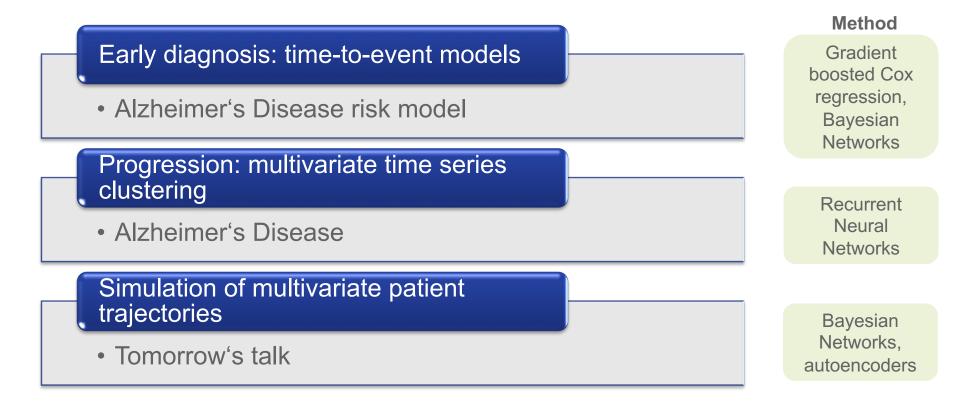
multinomial logistic regression-based likelihood ratio test (corrected for age, gender and education)

Conceptual Idea of Next Steps



Kapp & Tibshirani, Biostatistics 2007

Summary of Case Studies



Conclusion

Time series analysis is extremely relevant to understand diseases and to answer important questions in Precision Medicine

- Early disease diagnosis
- Disease progression / prognosis

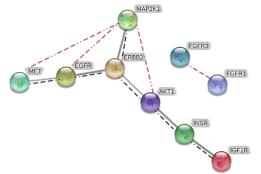
Multitude of methods, right method depends on actual application question

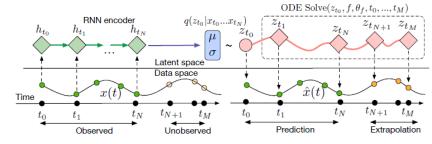
Outlook: Learning the Hidden Dynamics of Disease Development and Progression

Can we learn the mechanism behind disease progression?

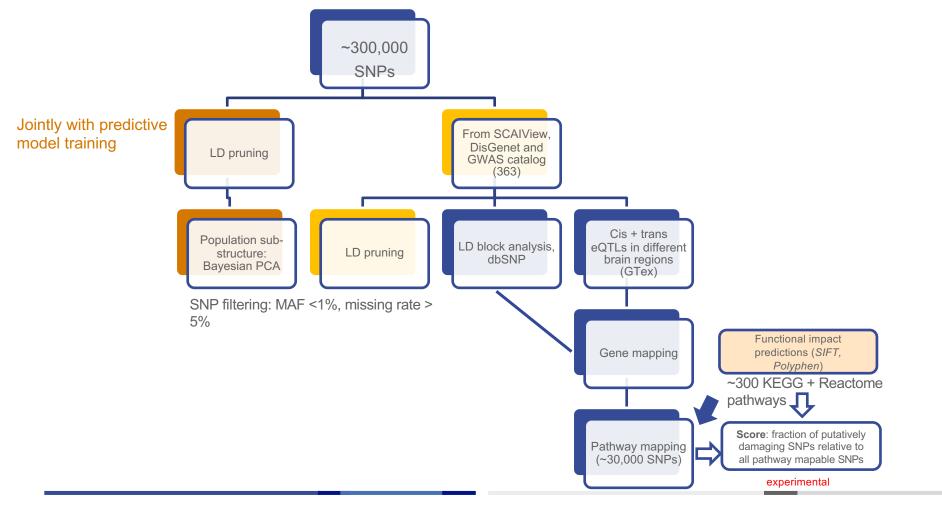
- · Time series predictions for each individual
- Extrapolation out of domain of training data possible

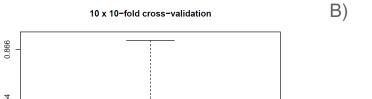
Idea: learn latent ODE (PhD project of Zahra Nasrollah)

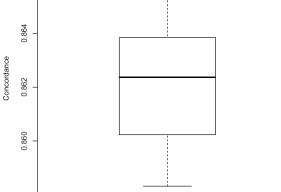


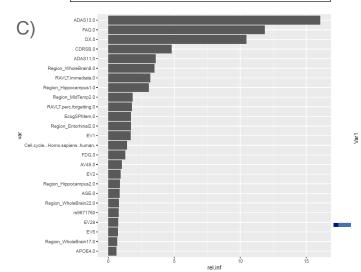


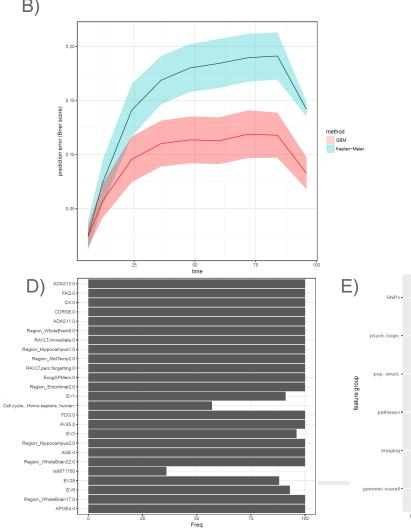
Chen et al., Proc NIPS 2018

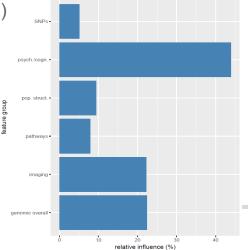






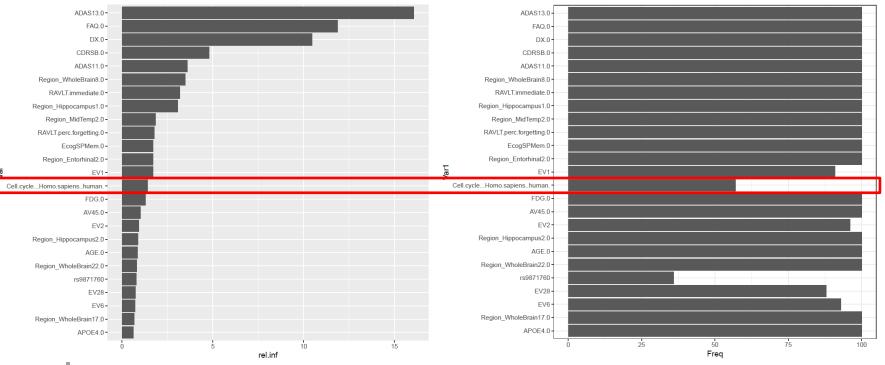






A)

Top Relevant Features



AD may be caused by aberrant re-entry of different neuronal populations into the cell division cycle (Nagy et al., Neuroscience, 1998)

Results of Predictive Modeling

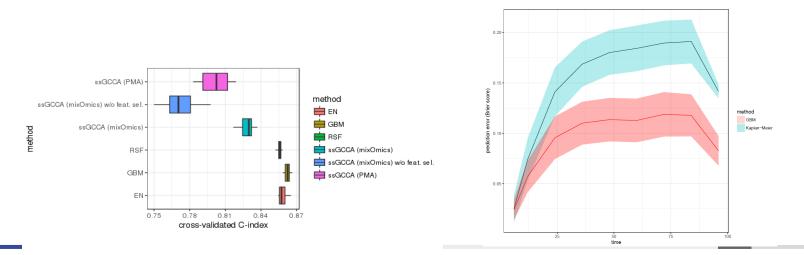
10 times repeated 10-fold cross-validation: ~86% C-index

- 50% = chance level
- 100% = perfect

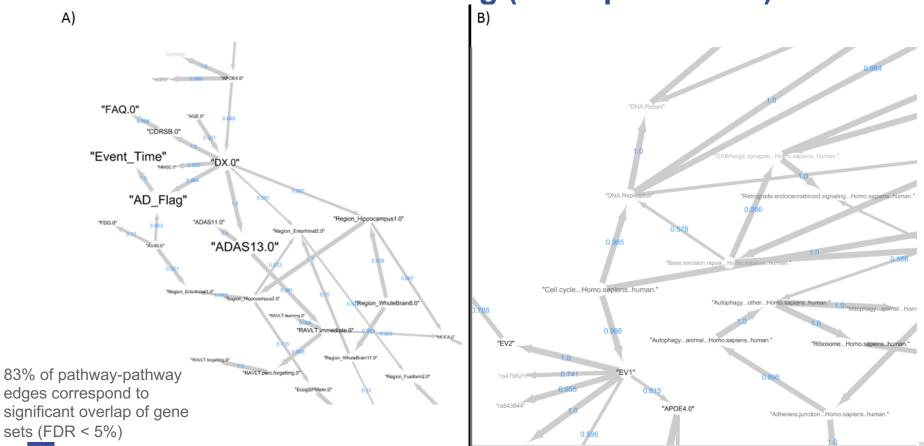
Multi-modal GBM significantly outperforms other methods

• Similar performance of single GBM, but more features selected

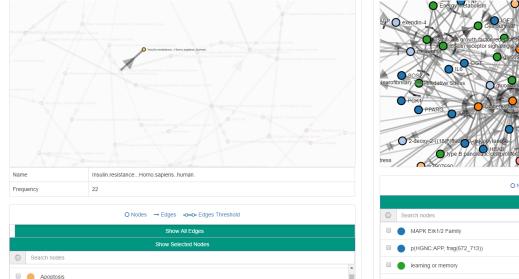
Prediction error over time: gradient boosting outperforms Kaplan-Meier estimator



Results of BN Structure Learning (Example Zooms)

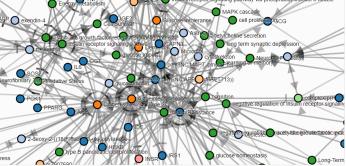


An Interactive Web Viewer for Bayesian Networks and Literature Derived Mechanisms



Insulin.resistance...Homo.sapiens..human. Rheumatoid.arthritis...Homo.sapiens..human

Region WholeBrain23.0



	Show Selected Nodes
۵	Search nodes
	MAPK Erk1/2 Family
	p(HGNC:APP, frag(672_713))
	learning or memory
	energy homeostasis
	ENO1
	MAPK JNK Family
	complex(p(HGNC:IGF1), p(HGNC:INSR))

http://neurommsig.scai.fraunhofer.de/bayesian