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Build digital model of brain aging
from clinical and imaging data
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6 – 8 y> 10 y
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Hierarchical model

→ Geodesic on a Riemannian
manifold "

→ Spatiotemporal transform
of trajectory

→ data point lying on a sub-
Riemannian manifold
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Bayesian non-linear mixed-effect model

Patient 2 observations

Patient 1 observations
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Bayesian non-linear mixed-effect model
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Bayesian non-linear mixed-effect model
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Bayesian non-linear mixed-effect model
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Bayesian non-linear mixed-effect model
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Spatiotemporal hierarchical model [Schiratti et al. IPMI’15, NIPS’15, PhD’17, JMLR’17]

Average trajectory
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 i(t) = t0 + ↵i(t� t0 � ⌧i)

Acceleration factor Time-shiftSpace-shiftRandom effects:

Fixed effects: (p0, t0, v0)

Parallel shift Time-warp

noise
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Fixed and random effects estimated by maximum likelihood optimation (MCMC-SAEM)
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Generic spatiotemporal model
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Models of Alzheimer’s disease progression

Jan 23th, 2019
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Reconstruct the natural history of AD: ADNI subjects with confirmed AD diagnosis
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• Models of cognitive decline
• ADAS (break down in 4 categories)
• MMSE

• Model of functional alterations
• FDG PET

• Models of anatomical alterations
• Cortical thickness maps
• Hippocampal atrophy
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• Personalize these models to individual subjects by optimizing:
• Time-shift
• Acceleration factor
• Space shifts

• Reconstruction errors
• Goodness-of-fit (on training data)
• Generalization to unseen data (CV)

• Uncertainty on measurements
• MRI data: test / re-test images
• PET data: consecutive images of cognitively normal subjects 

w/o amyloidosis
• Cognitive assessments: literature review
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Blue: distribution of noise data Red: distribution of reconstruction errors

The error between reconstructed and true data

is of the same order as the noise in the data

(either on training or test subjects)
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• Simulate disease progression, and extrapolate in the future

• Measure prediction errors

t0

t

v0
p0

vi

vij



S Durrleman 19

Constant progression
Personalized simulation

er
ro

r

1 2 3 4
Time-to-prediction (years)



S Durrleman 20

• Simulate a cohort of virtual patients
• Sample virtual patients’ trajectories
• Build a synthetic data set

For validation, we reproduce a virtual cohort with 
same characteristics as ADNI (sex ratio, number of 
subjects, distribution of time-points per subjects)
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Blue: characteristics of simulated data Red: characteristics of reconstructed data
Orange: characteristics of original data

The virtual cohort of simulated patients reproduces

the characteristics of the original ADNI cohort
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• Multi-modal model of Alzheimer’s disease progression
• Fits individual data with the same precision as the noise

• Simulate and predict future disease progression at the individual level

• Simulates synthetic data sets indistinguishable from the original ones (same statistics)
• Data augmentation & temporal resampling – soon a release of ADNI-One Million

Deformet!ca	
conda install -c aramislab

deformetrica
To be released soon

www.digital-brain.org

Koval et al., Simulating AD progression 
with personalised brain models, 
preprint, 2018





26


