VISUAL ANALYSIS OF LONGITUDINAL CLINICAL DATA

Prof. Dr.-Ing. Jörn Kohlhammer Fraunhofer IGD Fraunhoferstraße 5 64283 Darmstadt

Tel +49 6151 155 – 646 joern.kohlhammer@igd.fraunhofer.de www.igd.fraunhofer.de/IVA

IGD

Fraunhofer IGD Darmstadt

- Competence Centers
 - Interactive Multimedia Appliances
 - Interactive Engineering Technologies
 - Information Visualization and Visual Analytics
 - Virtual and Augmented Reality

Singapore

Spatial Information Management

Identification and Biometrics

Cultural Heritage Digitization

Visual Computing System

Medical Imaging and

• Technologies

Rostock

Darmstadt

 \bigcirc

Cognitive Computing

Information Visualization

Adapted from Card et al. 1999

Information Visualization

Big Data

Visual Analytics

What do we have?

- Automatic Knowledge Discovery & Data Mining
- Interactive Visual Data-Exploration

What do we need?

Tight Integration of Visual and Automatic Data Analysis Methods with Database Technology for a Scalable Interactive Decision Support

Visual Analytics at Fraunhofer IGD

- Visual Business Analytics
- Cyber Security
- Medical Data Analytics
- Sensor Analytics
- Other application where humans have to interact with massive amounts of data
 - Energy networks
 - IT networks

Jörn Kohlhammer • Dirk U. Proff • Andreas Wiener

Visual Business Analytics

Effektiver Zugang zu Daten und Informationen

dpunkt.verlag

Combining Visualization and AI to Analyze Health Data

- Interactive definition of cohorts for medical research
 - Exploration of patient data with many attributes across long time periods
 - Correlation analysis to identify similar patients using healthcare records and treatments
 - Combination with image-based approaches
- Long-standing collaboration with cancer research in Germany and Europe

Feedback loop

Visual Analysis of Time-dependent Data

- Interactive manipulation of time series
- Search for similar patterns
- Identification of correlations
- Creation of prediction models

04.04.2019 - Disease Progression Modeling Workshop 2019 - Kohlhammer © Fraunhofer IGD

Similarity

What is the relevant similarity measure?

04.04.2019 - Disease Progression Modeling Workshop 2019 - Kohlhammer © Fraunhofer IGD

Similarity

What is the relevant similarity measure?

04.04.2019 - Disease Progression Modeling Workshop 2019 - Kohlhammer © Fraunhofer IGD

Interactive Cohort Building

- Database of 20.000 patients with prostate cancer (100 – 200 data values per patient)
 - Disease progression
 - Therapy
 - Follow-up
- Statistical analysis: Optimize stratification to enable relevant and strong statistical assertions
- Main requirements
 - Visualize as many patients as possible in one view
 - Interactively model cohorts

Visualization of Patient Histories

Comparison of over 20,000 patients and their histories to better predict future events and understand progression of prostate cancer

Visualization of Patient Histories (Demo)

Visualization of Multiple Patient Histories

Bernard, Sessler, Kohlhammer, Ruddle, Using Dashboard Networks to Visualize Multiple Patient Histories, IEEE TVCG, 2018

Combination with ML: Active Learning

- Use of similarity models
- Enhancing the model through feedback of medical experts (well-being of patients depending on disease phase and certain blood values)
- Better understanding of mental models of doctors
- Better understanding of similar patients and cohorts

CAVA

Zhang, Gotz, Perer, Iterative cohort analysis and exploration, Information Visualization Journal, 2014

Event-based Data

100 breast cancer patients with various events over time

Image-based monitoring of liver interventions

Graph-based registration of liver CT data

- Control of success of liver tumor ablations
 Verification whether tumor tissue has been completely covered
- Compensation for tissue deformations between planning and control scan
- Automatic pre-/post graph matching of liver vessels

Visual Healthcare Technologies - Dr. Stefan Wesarg © Fraunhofer IGD

Longitudinal lymph node monitoring

Model-based registration of multi-modal head & neck image data

Lymph node size as an indicator for a relapse \rightarrow automatically establishing correspondencies over time

Elastic, automatic matching of longitudinal image data

Conclusion

- Combination of image-based data and patient data over time
- Collaboration on data-driven medicine with clinics
 - Prostate cancer in Berlin (Charité) and Hamburg (UKE)
 - Head and neck cancer in Düsseldorf
 - Breast cancer in Frankfurt (Agaplesion Markus)
- DFG project on segmentation and labeling of multivariate time series
- Large new Fraunhofer initiative on cost-effective medicine
- Visit us at DMEA 2019, Hall 2.2, E109

THANK YOU!

Prof. Dr.-Ing. Jörn Kohlhammer Fraunhofer IGD Fraunhoferstraße 5 64283 Darmstadt

Tel +49 6151 155 – 646 joern.kohlhammer@igd.fraunhofer.de www.igd.fraunhofer.de/IVA